
EUCLIDEAN GEOMETRY SUPPLEMENT

TRIGONOMETRY FROM THE GROUND UP

A. The Arithmetic of Segments: Addition and Comparison

Euclid uses his Common Notions to cover a lot of ground. At least one place where we can do a bit better
if we put in the effort is in discussing how we handle addition and subtraction of segments.

Definition. Let AB and CD be two segments. We say that AB is less than CD when there exists a point
M lying between C and D such that AB is congruent to CM . Sometimes we will say that CD is greater
than AB, which means the same thing.

A.1. Conjecture. If AB, CD and EF are segments such that AB is less than CD and CD is less than EF
then AB is less than EF .

Definition. Let AB and CD be segments. We define a new segment AE called the sum of AB and CD as
follows: Extend the segment AB to a ray from A through B, and choose a point E on the ray so that

(1) B lies between A and E, and
(2) BE is congruent to CD.

We shall write AB + CD for the sum of the two segments.

A.2. Conjecture. If AB is a segment, then AB + AB may not be equal to BA + BA but these two new
segments are congruent. [Related question: How does AB +BA fit into this picture?]

Definition. Let AB be a segment. By the class of AB, we mean the set of all segments CD such that CD
is congruent to AB.

A.3. Conjecture. Let a and b be segment classes. Then exactly one of the following holds:

(i) a ∩ b = ∅, or
(ii) a = b.

Definition. Let a and b be segment classes. We define the sum a+b to be the class of the segment AB+CD,
where AB is an element of the class of a and CD is an element of the class b.

A.4. Problem. The notion of sum of classes does not depend on the particular choices of segments AB and
CD.

A.5. Problem. Let a and b be segment classes. Then a+ b = b+ a.

A.6. Problem. Let a, b, c be segment classes. Then (a+ b) + c = a+ (b+ c).

A.7. Problem. Let a, b be segment classes. Then one and only one of the following holds:

(i) a = b;
(ii) There is a class c such that a+ c = b;
(iii) There is a class c such that a = b+ c.

A.8. Problem. Show that the notion of “less than” extends unambiguously to segment classes.

A.9. Problem. Let a, b, c be segment classes such that a is less than b. Then a+ c is less than b+ c.
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B. Arithmetic of Segments: Multiplication

Once and for all, choose a segment XY and declare the class of this segment to be the unit
class 1.

Definition. Let a, b be two segment classes. We define their product a · b as follows:
Let AB ∈ 1 and construct a segment BC ∈ a which is perpendicular to AB. This forms a right triangle

ABC. Next construct a right triangle DEF with angle E a right angle, angle D congruent to angle A and
DE ∈ b. Then a · b is the class of EF .
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B.1. Problem. Show that this definition makes sense because the constructions can be carried out, and also
the end result does not depend on the choices made.

We wish to have several “algebraic properties” for this operation. That is the content of the next five
problems.

B.2. Conjecture. For any segment class a, it is true that a · 1 = a.

B.3. Conjecture. For any segment classes a, b, it is true that a · b = b · a.

B.4. Conjecture. For segment classes a, b, c, it is true that a · (b · c) = (a · b) · c.
B.5. Conjecture. For any segment class a, there is a unique segment class b so that a · b = 1.

Definition. The class constructed in the last Conjecture is called the inverse of a and denoted a−1. In
what follows, we will sometimes have the occasion to form a product like d · a−1 and in this case we may

write d/a or
d

a
instead.

B.6. Conjecture. For segment classes a, b, c, it is true that a · (b+ c) = a · b+ a · c.
Now we can define our trigonometric functions.

Definition. Let α be a given angle. We define a pair of segment classes called the sine of α and the cosine
of α as follows:

Construct a right triangle ABC with hypotenuse AC in the unit segment class 1, and angle CAB congruent
to α. Then the sine of α is the class of BC and is denoted sinα, and the cosine of α is the class of AB and
is denoted cosα.

B.7. Problem. Suppose that angle α is less than a right angle. Show that the construction required in the
last definition is both possible and unambiguous. (So sinα and cosα make sense.)
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C. Similar Triangles

Our work on multiplication hinges on knowing about triangles which have corresponding angles the same,
but sides which differ. Let us explore this idea.

Definition. We say that two triangles ABC and DEF are similar when

• ∠A ∼= ∠D, ∠B ∼= ∠E and ∠C ∼= ∠F , and
• there exists a segment class λ such that

AB = λ ·DE, BC = λ · EF, and CA = λ · FD.
When this definition is satisfied, we may denote the relationship that ABC is similar to DEF by the symbol
ABC ∼ DEF .

Note that we are being sloppy about multiplying segments and segment classes. At this point, there
should be no confusion that always we really multiply segment classes, but sometimes we may denote a class
by one of its representatives.

Like the definition of triangle congruence, this definition has a lot in it to check. We want to develop
some theorems that give sufficient conditions for similarity and have shorter lists of things to verify. Our
main goal is this:

Theorem (The Similarity Theorem). Two triangles are similar if and only if two of the three pairs of
corresponding angles are congruent.

To prove this result, we will work through a sequence of partial results.

C.1. Problem. Prove the Similarity Theorem under the additional hypotheses that

• all three pairs of corresponding angles are congruent, and
• both triangles are right triangles.

C.2. Problem. Prove the Similarity Theorem under the additional hypothesis that all three pairs of corre-
sponding angles are congruent.

Hint: How can we decompose an arbitrary triangle into some right triangles? Think about the proof of the
theorem on existence of the incenter.

C.3. Problem. Prove the Similarity Theorem without any additional hypothesis.

C.4. Conjecture (SAS Similarity). Suppose that ABC and DEF are triangles such that ∠A is congruent
to ∠D and there exists a segment class λ such that AB = λ ·DE and AC = λ ·DF . Then ABC is similar
to DEF .

Next, we want a generalization of the Midline Theorem that clarifies the relationship between“proportionality”
of segments and parallelism.

C.5. Conjecture. Let ABC be a triangle. Extend sides AB and AC to rays emanating from A. Let ` be a
line which cuts across these two rays at points D and E, respectively. Then ` is parallel to BC if and only if

AB

AD
=
AC

AE
.

C.6. Problem. We have a variety of triangle congruence theorems. Which ones can be adjusted to give
similarity theorems? State and prove some theorems.
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D. The Anatomy of an Altitude

Let ABC be a triangle. The altitude of the triangle through C is the line segment from C to the line
through A and B which is perpendicular to that line. I want to introduce a bunch of terminology and
notation quickly, so I’ll use a diagram.

H

CF

C'

O

A

C

B

Let O be the circumcenter of the triangle ABC. Then

CCF = altitude
CF = foot

CFC
′ = root

H = orthocenter
CH = ear
HCF = stem

D.1. Problem. Show that the three altitudes of a triangle are concurrent. (The point of concurrence is
called the orthocenter.)

D.2. Conjecture. Let triangle ABC be inscribed in a circle whose diameter is a unit segment. Suppose
that all three internal angles of ABC are less than a right angle. Show that AB ∈ sin(∠ACB).

D.3. Conjecture. Let triangle ABC be inscribed in a circle whose diameter is a unit segment. Suppose
that all three internal angles of ABC are less than a right angle. Show that CH ∈ cos(∠ACB).

D.4. Problem. Suppose that α is an angle which is congruent to or greater than a right angle. Find a
geometric way (using our diagram) to interpret sinα and cosα. Can these segment classes be related to the
sine or cosine of some angles that are less than a right angle?

D.5. Conjecture. A circle through any three of the four points A,B,C,H will have the same diameter as
any of the other possible choices.

D.6. Conjecture. The stem and root of an altitude are congruent.

D.7. Problem (More Trigonometry). Use our basic picture of an acute triangle inscribed in a circle with
unit diameter to give geometric descriptions to the other basic trigonometric functions: (a) tanα, (b) secα,
(c) cotα, and (d) cscα.
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E. Even More Trigonometry

E.1. Conjecture (The Law of Sines). If ABC is inscribed in a circle of diameter d, then AB ∈ d · sin(∠C),
BC ∈ d · sin(∠A), AC ∈ d · sin(∠B).

In modern terms, the last result is stated more like this: If a triangle has angles α, β and γ opposite sides
a, b and c, respectively, and also has circumscribed circle of radius R, then

a

sin(α)
=

b

sin(β)
=

c

sin(γ)
= 2R

E.2. Conjecture. Continuing the last conjecture, and recalling that H is the orthocenter, we have the
relations AH ∈ d · cos(∠A), BH ∈ d · cos(∠B), and CH ∈ d · cos(∠C).

E.3. Conjecture. Let ABCD be a cyclic quadrilateral. Then there exists a point K on the segment AC so
that 4ABK is similar to 4DBC.

E.4. Problem (Ptolemy’s Theorem). Let ABCD be a cyclic quadrilateral, and suppose it is simple. Then

AC ·BD = AB · CD +AD ·BC

E.5. Problem. Show if D does not lie on the circumcircle of triangle ABC, then the left-hand side is always
strictly less than the right-hand side.

This result is due to Ptolemy, an astronomer-mathematician from Alexandria, and it is one of my favorite
theorems. One can view it as a way of characterizing the points lying on a circle. The three points A,B,C
define a circle, the circumcircle of triangle ABC. Then the theorem tells us a way to decide if a fourth point
D lies on the circle or not. If you know something about ancient astronomy, you will recognize why Ptolemy
thought this was important thing.

E.6. Problem. Use Ptolemy’s theorem to show that for a convex regular pentagon, if a is the segment class
of the side and b is the segment class of a diagonal, then ϕ = b · a−1 is the golden ratio. That is, ϕ is the
positive root of the equation ϕ2 = 1 + ϕ.

One can base a pretty thorough understanding of trigonometry on Ptolemy’s theorem. The last sequence
of problems consists of trigonometric identities.

E.7. Problem. (sinα)2 + (cosα)2 = 1

E.8. Problem. Use Ptolemy’s theorem to prove the Law of Cosines: Let ABC be a triangle. If a, b and c
are the segment classes of the sides opposite vertices A,B and C, respectively, then

c2 + 2ab cos(∠ACB) = a2 + b2

E.9. Problem. Explain how the law of cosines is related to Euclid’s Propositions II.12 and II.13.

E.10. Problem. sin(α+ β) = cosα sinβ + cosβ sinα

E.11. Problem. cos(α+ β) = cosα cosβ − sinα sinβ

E.12. Problem. cos(α− β) = sinα sinβ + cosα cosβ

E.13. Problem. tanα+ tanβ =
sin(α+ β)

cosα cosβ


